勤学思合作机构>

勤学思培训网USEIRY

欢迎您!
朋友圈
机构未认证 全国统一学习专线 8:00-21:00

位置:勤学思培训网USEIRY » 培训新闻 » IT技术 » 影视动漫 » 动漫设计 » 总算懂了在教学中如何体现数学思维

总算懂了在教学中如何体现数学思维

发布时间:2022-12-17 23:26:41
1在教学中如何体现数学思维

在基础教育中,数学占有重要的地位。作为现代社会的一个公民,必须具有一定的数学素质,其中包括若干必备的数学知识和技能,受到过逻辑推理和理性思维的熏陶。 那么在教学中如何体现数学思维呢?下面,朴新小编给大家整理了相关的数学教学技巧。

1数学思维的本质与中学生思维发展的特性

数学思维实质上就是数学活动中的思维。对此,可以这样理解:“其一,是指一种形式,这种形式表现为人们认识具体的数学学科,或是应用数学于其他科学、技术和国民经济等的过程中的辩证思维;其二,应认识到它的一种特性,这种特性是由数学学科本身的特点,及数学用以认识现实世界现象的方法所决定的,同样,也受到所采用的一般思维方式的制约。”

在数学学习中,随着学习内容的不断加深和抽象概括水平的逐步提高,学生的数学思维也逐步由直观行动思维发展到具体形象思维,再发展到抽象逻辑思维。当然,由于数学思维活动的复杂性,这三种思维成分之间往往又能互相渗透。

初中学生的数学思维的发展具有两个主要特点:第一,抽象逻辑思维日益发展,并逐渐占有相对优势,但具体形象思维仍然起着重要作用;第二,思维的独立性和批判性有了显著的发展,他们往往喜欢怀疑和争论问题,不随便轻信教师和书本的结论。当然,初中学生思维的独立性和批判性还是很不成熟的,还很容易产生片面性和表面性,这些缺点是和他们的知识经验的不足相联系的。而高中学生的数学思维达到了更高的水平。首先,思维具有更高的抽象性和概括性,并开始形成辩证逻辑思维。如果说初中学生的数学思维还属于经验型的话,那么高中学生的思维则已明显地由经验型向理论型转化,抽象逻辑思维逐渐占主导地位。

其次,思维具有鲜明的意识性。注意力更加稳定,观察力更加精确,更加深刻,能够发现事物的本质和规律。

[图片0]

2精心创设问题情境,诱发学生思维的积极性

在数学学习中,学生的思维是怎样发生的?怎样才能使学生的思维持续发展?我以为,教师科学地运用教学方法的实质是最短的时间,最大限度地发挥学生的智慧,达到教学的高效率、高质量。教师应该根据学科特点,结合不同阶段的具体教学任务和要求,知识本身的主次、难易及学生个性差异等情况,针对所要解决问题的矛盾特殊性,选择和运用有效的教学方法。精心创设问题情境,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。

学生对学习有无兴趣和求知欲望,是能否积极思维的重要的动机因素。要引导学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情境,引起学生对数学知识本身的兴趣。

在数学问题情境中,新的需要与学生原有的数学水平之间产生了冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情境,成为诱发和促进学生思维发展的动力因素。

2训练数学思维

第一、自主学习,理解数学思维。

数学概念、结论的得出。很多时候不是老师讲解例题就能让学生理解的,必须经过形象事例的堆积,让学生经历知识产生的过程,才能领悟与理解。

老师上课讲解例题后,很多学生只是对例题了解明白了。然而相同的题目,换了几个数字,换了一种说法,就能难倒一大片学生。这是为何?很多老师对这种现象都会很无奈的说天下怎么会有这么蠢的学生。

其实不能说这样被难倒的学生个个都蠢。绝大多数来说是没有理解数学思维。不知道来历,为什么要那样子做。所以必须让学生自主学习,让学生经历知识的产生过程。

[图片1]

第二、巧设练习,渗透数学思考方法。

科学的有层次的设计练习,才能让学生进行思维的训练。

教师在布置作业和练习时,要有意思的布置一些引导学生发散思维的题目。

先是模仿练习,让学生巩固基本知识和基本技能。

然后是变式练习,让学生理解知识和发展思维。

最后是应用练习,解决问题的过程中看到的是学生在综合应用学习的数学知识,但同时看不到的是数学的思想方法。

第三、自主反思,领悟思想方法。

自主反思,这一过程是没有任何人可以替代的。在数学学习过程中,教师要有意识的引导学生自觉地检查自己的思维活动,反思自己的解题方法,总结异同,总结经验教训。

3数学思维训练方法

一、数学是最为严谨、最为严格的科学

数学中有许多运算,它们有严格的法则,不能违反。应教会学生准确、熟练地进行各种基本的运算。数学的论证中,使用非常严格的演绎推理。在古代,欧几里德几何是严格推理的模范,它以公理、公设作为出发点,以演绎的方式构成了几何学,它的公理被认为是“不证自明”的。公设是归纳了人们的几何观察而设定的。然而这种公理化还没有到达现代化的标准。HiIbert的几何基础中列举了一些基本对象(点、直线)、基本关系(衔接、合同、介于),所谓公理就是基本对象和基本关系的属性。一切几何定理,就是这些属性的演绎推理,不必对点、直线再下定义,不必引进公理之外的属性,就可建立起几何学的理论架构。各种数学系统,如整数、实数、集合、群等等都可以建立在各种公理系统之上。

二、数学是理性的科学,是理性思维的范例

我听说,有些中小学生把数学看成是背公式的学科,这完全是误解。固然,学习数学过程中记忆是必要的,有时还要记得熟,不假思索就能说出来,例如乘法的九九表等等。但数学是理性思维的科学,有严格逻辑结构的科学,对其中的每一项内容,应该不仅仅是知其然,而且要知其所以然。最简单的公式,都有它的来源,矩形面积等于两个边长之积,就是从测面积的经验中得出来的。有了这个经验事实做基础,然后就可以证明许多东西,所以可以论证三角形、平行四边形、梯形等等图形面积的公式。“勾三、股四、弦五”是勾股定理的~个特例,这样重要的定理一定要加以证明,它也可以利用计算面积得出(我国古代的证明比欧几里德几何原本中的证明简单得多)。数学是不满足于个别事物和现象的。又如说/2是无理数,开方许多步仍然没有完,没有出现循环的情况还不能说明问题,因为这许多步仍然是有限步,这件事作了严格的证明才能成立。论证的过程,也就是进一步理解的过程,揭示内在联系的过程,对学生来说,是提高数学素质的重要手段。只有懂了,才能记得牢固,即使忘了,也会自己推导出来。

三、数学是极富创造性的科学

数学的最原始对象自然数就是人类思维的创造,现实世界只有三头牛、四匹马等等,数字三、四就是从此抽象出来的。点和直线也是如此。整个数学发展的过程也就是新概念、新方法、新理论的创造过程。例如从自然数到整数、到有理数、无理数以及虚数都有重大的创造。恩格斯曾说过数学是研究思想事物的科学,这是很有见地的,因为它不像别的科学有特定的具体的物质对象,如分子、原子、地球、太阳、细胞等等。对于思想事物,只有不断创新才能发展出新的研究对象和方法,当然这种发展也是不断地从各种自然现象和社会现象中吸取营养而得到的。希腊学者研究天文学,创建了球面三角。牛顿的微积分研究是和力学的研究平行进行的。

更多培训课程,学习资讯,课程优惠,课程开班,学校地址等学校信息,请进入 勤学思培训网USEIRY 详细了解
咨询电话:

还没有找到合适的课程?赶快告诉课程顾问,让我们顾问马上联系您! 靠谱 的培训课程,省时又省力!

微信访问

#tel_020#